Yingying Chen's group wins Best Paper Runner-Up Award at IEEE MASS 2023

Yingying Chen's group won the Best Paper Runner-Up Award for their paper entitled "Towards Efficient Privacy-Preserving Top-k Trajectory Similarity Query" at IEEE MASS 2023. The 20th IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS 2023) is the premier conference for mobile ad-hoc networks and smart systems, defined broadly.  As wireless ad-hoc networks continue to evolve and specialize into a number of application scenarios and environments, and sensor-based systems and technologies increasingly permeate our everyday life and become the inner fabric of the Internet of Things and cyber-physical systems, the unfolding of smart environments such as smart cities, smart farming, smart healthcare, and smart manufacturing, to name a few, demand integrated solutions that can make intelligent use of both cloud and edge systems, while applying machine learning and artificial intelligence tools to handle their growing complexity and to leverage the vast amount of available data created.

Sponsored by the IEEE Computer Society and IEEE Computer Society's TCDP, the 20th edition of the IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS) was held in Toronto, Canada in September 2023, and brought together researchers, developers, and practitioners to address recent advances in mobile ad-hoc and smart systems, covering algorithms, theory, protocols, systems & applications, experimental evaluations and testbeds, security/privacy, as well as AI/ML-based smart design.

Congratulations on this achievment Yingying !

 

Third Annual Rutgers Robotics Workshop Successfully Held on September 22, 2023

The Third Annual Rutgers Robotics Workshop was held on September 22, 2023, at 33 Livingston Ave., Edward J. Bloustein School of Planning and Public Policy. This interdisciplinary event brings together faculty, students from three schools (School of Engineering, School of Arts and Science, Bloustein) as well as  industry representatives.  The workshop is part of the NSF National Research Traineeship SOCRATES (Socially Cognizant Robotics for a Technology Enhanced Society),  a cross-disciplinary training program aimed at establishing methods for effective collaboration among researchers from engineering, computer science, psychology, and public-policy and planning with the goal of designing socially-cognizant robotic systems. SOCRATES core faculty include Kristin Dana (PI, ECE), Clint Andrews (Bloustein), Kostas Bekris (CS), Jacob Feldman (Psychology), Jingang Yi (MAE), Pernille Hemmer (Psychology), Aaron Mazzeo (MAE), Hal Salzman (Bloustein), and Matthew Stone (CS).
 
The workshop began with opening remarks from Prabhas V. Moghe, Executive Vice President for Academic Affairs at Rutgers. A morning panel was held on “Robots in the age of ChatGPT”. Graduate students from across five departments presented posters on their research during a poster session.  Undergraduate students also participated in the day’s activities. Industry Representatives from SRI, Latent AI, Siemens Healthineers participated in the panel discussion. Dean Stuart Shapiro gave a welcome address and also in the afternoon panel on “New Robot Technologies and the Social Impact”.  Prof. Ron Arkin from Georgia Tech gave the keynote address entitled “Civilized Collaboration: Ethical architectures for enforcing legal requirements and mediating social norms in Human-robot Interaction”. The workshop wrapped up with a tour of the CS Robotics Research Lab.
For more information on the SOCRATES NRT: https://robotics.rutgers.edu/

Rutgers students won the first-place award of "Fair and Intelligent Embedded System Challenge" in Embedded System Week (ESWEEK 2023)

A team of Rutgers ECE graduate students (Cheng Yang, Yang Sui and Jinqi Xiao, under supervision of Prof. Bo Yuan), won the first-place award of "Fair and Intelligent Embedded System Challenge" in Embedded System Week (ESWEEK 2023). The award carries a prize of $4000. ESWEEK is the premier event covering all aspects of hardware and software design for intelligent and connected computing systems. In this competition,  the participating teams design and implement working, open-source AI/ML algorithms that can automatically discriminate skin disease from skin image while being able to be deployed and run on the Raspberry PI embedded board. Comprehensive performances metrics, including detection accuracy, fairness, and inference latency, are evaluated and ranked.
 
Congratulations to Prof. Bo Yuan, Cheng Yang, Yang Sui and Jinqi Xiao!
 

WINLAB Chief Technologist Ivan Seskar in One of the Five Teams Selected by NSF $25 million Investment to Secure 5G Technologies

 

WINLAB Chief Technologist Ivan Seskar is part of a team that received an NSF award for Securing 5G Networks. The U.S. National Science Foundation Directorate for Technology, Innovation and Partnerships (TIP) is tackling 5G communication infrastructure and operational challenges through a $25 million investment to advance five convergent teams from Phase 1 to Phase 2 of NSF Convergence Accelerator Track G: Securely Operating Through 5G Infrastructure.  The goal of the Convergence Accelerator Track G is to enable enhancements to end devices — such as smartphones and tablets — and augmentations to 5G wireless infrastructure, providing capabilities to military, government and critical infrastructure operators to operate through public 5G networks while meeting security and resilience requirements. Please see a press release from the NSF here.
 
Rutgers PI Seskar is part of one of the 5 projects selected for funding, "INDIGO: Intelligent 5G Networks Designed and Integrated for Globalized Operations" that is led by AT&T. This project aims to enhance the security, adaptability, and resilience of 5G networks for the Department of Defense (DoD) and public safety entities during crises. It employs Human-Centered Artificial Intelligence to enhance human decision-making to configure and manage complex 5G networks and optimize coverage and performance across multiple operator radio access networks. More details of the project can be found at the NSF Awards page here.
 
Congratulations Ivan and WINLAB!

ECE students Spilios Evmorfos and Zhaoyi Xu win the Best Student Paper Award at IEEE MLSP

The ECE Department is proud to announce that the paper authored by Spilios Evmorfos and Zhaoyi Xu (under the supervision of Prof. Athina Petropulu) has received the Best Student Paper Award at the 2023 IEEE Workshop on Machine Learning for Signal Processing (IEEE MLSP), Rome Italy. The paper was presented at the MLSP workshop by Spilios.   The abstract of the paper is given below. 

Congratulations to Spilios, Zhaoyi, and Athina !

 

 

GFLOWNETS FOR SENSOR SELECTION
Spilios Evmorfos, Zhaoyi Xu, Athina Petropulu

The efficacy of sensor arrays improves with more elements, yet increased number of elements leads to higher computational demands, cost and power consumption. Sparse arrays offer a cost-effective solution by utilizing only a subset of available elements. Each subset has a different effect on the performance properties of the array. This paper presents an unsupervised learning approach for sensor selection based on a deep generative modeling.

The selection process is treated as a deterministic Markov Decision Process, where sensor subarrays arise as terminal states.  The Generative Flow Network (GFlowNet) paradigm is employed to learn a distribution over actions based on the current state. Sampling from the aforementioned distribution ensures that the cumulative probability of reaching a terminal state is proportional to the sensing performance of the corresponding subset. The approach is applied for transmit beamforming where the performance  of a subset is inversely proportional to the error between its corresponding beampattern and a desired beampattern.

The method can generate multiple high-performing subsets by being trained on a small percentage of the possible subsets (less than 0.0001% of the possible subsets for the conducted experiments).
 

Rutgers Scientists Develop Method to Detect Deadly Infectious Diseases

The new technique employs nanoballs -- microscopic clumps made of tinier particles of genetic material -- and combines that technology with advanced electronics.

Super sensitive technique could revolutionize treatment during pandemics like COVID-19

Rutgers researchers have developed a way of detecting the early onset of deadly infectious diseases using a test so ultrasensitive that it could someday revolutionize medical approaches to epidemics.

The test, described in Science Advances, is an electronic sensor contained within a computer chip. It employs nanoballs – microscopic spherical clumps made of tinier particles of genetic material, each of those with diameters 1,000 times smaller than the width of a human hair – and combines that technology with advanced electronics.

“During the COVID pandemic, one of the things that didn’t exist but could have stemmed the spread of the virus was a low-cost diagnostic that could flag people known as the ‘quiet infected’ – patients who don’t know they are infected because they are not exhibiting symptoms,” said Mehdi Javanmard, a professor in the Department of Electrical and Computer Engineering in the Rutgers School of Engineering and an author of the study. “In a pandemic, pinpointing an infection early with accuracy is the Holy Grail. Because once a person is showing symptoms – sneezing and coughing – it’s too late. That person has probably infected 20 people.”

For the past 20 years, Javanmard has been developing biosensors – devices that monitor and transmit information about a life process. During the COVID-19 pandemic, he became disheartened about the extent of infections and the extreme loss of life. He believed there had to be a way of using biosensors as a test to detect illness earlier.

Working with Muhammad Tayyab, a Rutgers doctoral student and co-author of the study, Javanmard and research colleagues at the Karolinska Institute in Sweden and Stanford and Yale universities started brainstorming.

“We thought: How is there a way where we can leverage our individual expertise to build something new?” Javanmard said.

The biosensor developed by the team works through a series of steps. First, it zeroes in on a virus’ characteristic sequence of nucleic acids – naturally occurring chemical compounds that serve as the primary information-carrying molecules in a cell. Next, because it amplifies any nucleic acid sequence found in the sample, it makes many more copies, as many as 10,000. Then, it clumps those thousands of specks of nucleic acids into nanoballs that are “large” enough to be detected.

The nanoballs are identified electrically when they are directed individually through minute channels containing electrodes on opposite sides. The process is akin to people walking single file through an airport security gate and being X-rayed one by one.

“Our method involves taking the viral nucleic acid material and rolling it up into a ball of DNA that is large enough to be detected by a cell measurement device known as an electronic cytometer,” Javanmard said. “As a result, we can flag the infection at its earliest stages when the concentration is still very low.”

By Kitta MacPherson for Rutgers Today
 
September 18, 2023
 
Media Contact
Kitta Macpherson
kitta.macpherson@rutgers.edu

ECE and WINLAB faculty Yingying Chen received a new NSF grant for Efficient and Robust Multi-model Data Analytics for Edge Computing

ECE Professor Yingying Chen received a new NSF grant under the Division of Information and Intelligent Systems (IIS) for the project “Efficient and Robust Multi-model Data Analytics for Edge Computing.” This is a three-year $600,000 research project collaborating with Temple University and New York Institute of Technology. Rutgers’ share in this project is $240,000.

Many advanced edge-computing applications rely on large-scale data analysis for high-level decision-making. Edge computing makes computing faster and more efficient because it takes place near the physical location of either the user or the data rather than sending all the information to the cloud. For example, augmented reality/virtual reality (AR/VR) applications process data from high-definition sensors (such as cameras, motion sensors, and microphones) to enable accurate and robust human-computer interactions. Drones and electric vehicles perform tracking, adjustments and obstacle recognition and avoidance via analyzing data at the level of the vehicle. However, the current ability to understand and manage various high-dimensional sensing data is obscured by significant knowledge and data gaps due to the heterogeneous edge device and environments, hindering the building of precise models for emerging edge computing applications using data analytics. One important trend in edge computing is utilizing artificial intelligence (AI) to extract complex knowledge from various sensor measurements for precise modeling. Most edge devices have limited computing and memory resources, making it challenging to perform sophisticated data analytics using AI while satisfying the time requirements of most applications. Therefore, a heuristic data analytic framework is needed to enable efficient and robust edge event prediction using multi-model learning on resource-constrained edge devices. The goal of this project is developing transformative machine-learning and data analytics technologies for enabling AI-based applications on resource-constrained edge computing devices (such as IoT devices, AR/VR headsets, and drones). The outcome of this project will advance data analytics and machine-learning research by deriving and integrating various high-dimensional sensing data from diverse data sources and building robust predictive models for generic edge-computing applications.

More details on the project can be found at the NSF page here: https://www.nsf.gov/awardsearch/showAward?AWD_ID=2311596&HistoricalAwards=false

Congratulations to Yingying!
 

Pages

Subscribe to Rutgers University, Electrical & Computer Engineering RSS